Sains Malaysiana 52(7)(2023):
1925-1938
http://doi.org/10.17576/jsm-2023-5207-03
Heat
Stress in Vegetables: Impacts and Management Strategies - A Review
(Tekanan Haba pada Sayur-sayuran: Kesan dan Strategi Pengurusan - Suatu Ulasan)
YUSUF
OPEYEMI OYEBAMIJI1, NORAZIYAH ABD AZIZ SHAMSUDIN1,2,3*, ASMUNI MOHD IKMAL1 & MOHD RAFII YUSOP4
1Department of Biological Sciences and Biotechnology,
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
2Seed Bank Unit,
Natural History Museum, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
3Centre for Insect
Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
4Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Received: 16 February 2022/Accepted: 22 June 2023
Abstract
Global
climate change has not only caused a significant rise in the average temperature
around the world but has also threatened crop productivity and food security. Heat
stress disrupts various plant physiological and biochemical
processes, such as inhibition of growth and development, reduction of photosynthesis rate and nutrient uptake, consequently causing yield losses.
The destructive effects of heat stress are expected to worsen in the
coming years. Thus, it has become imperative to understand how vegetables
respond and adapt to heat stress in order to improve their heat tolerance
ability. Various approaches have been adopted to enhance heat stress tolerance in vegetables,
including modifying cultural practices and crop improvements through several breeding methods. This review gives
comprehensive and up-to-date information on the effects of heat stress on
vegetables;
and existing as well as emerging methods adopted to enhance heat tolerance in
vegetables. It also provides a brief overview of a new method called speed
breeding, which can be leveraged to fast-track the breeding process for
developing heat stress-tolerant vegetables.
Keywords: Breeding method; environmental
stress; food security; high temperature
Abstrak
Perubahan iklim global bukan sahaja menyebabkan kenaikan
suhu purata yang signifikan di seluruh dunia
tetapi juga telah mengancam produktiviti tanaman dan
sekuriti makanan. Tekanan haba mengganggu pelbagai proses fisiologi dan biokimia pokok seperti perencatan pertumbuhan
dan perkembangan, pengurangan kadarfotosintesis dan pengambilan nutrien yang akhirnya menyebabkan pengurangan hasil. Kesan kemusnahan disebabkan oleh tekanan haba dijangka akan lebih terukpada tahun terkehadapan. Oleh itu,
adalah penting untuk memahami bagaimana
sayur-sayuran bertindak balas dan beradaptasi dengan
tekanan haba untuk meningkatkan keupayaan toleransinya terhadaptekanan.
Pelbagai pendekatan telah diambil bagi meningkatkan toleransi terhadap tekanan
haba dalam sayur-sayuran termasuklah mengubah suai amalan penanaman dan
menambah baik tanaman melalui pelbagai kaedah pembiakbakaan.
Ulasan ini memberikan maklumat yang komprehensif dan terkini tentang kesan
tekanan haba kepada sayur-sayuran dan kaedah sedia ada serta baharu yang diguna
pakai untuk meningkatkan toleransi sayur-sayuran terhadap tekanan haba. Ulasan ini juga memberi gambaran ringkas
tentang kaedah baharu yang dipanggil pembiakbakaan pantas yang
boleh dimanfaatkan untuk mempercepat proses pembiakbakaan bagi menghasilkan
sayur-sayuran yang toleran terhadap tekanan haba.
Kata kunci: Jaminan makanan; kaedah pembiakbakaan; suhu tinggi; tekanan persekitaran
REFERENCES
Aboelsoud, H.M.
& Ahmed, A.A. 2020. Effect of biochar, vermicompost and polymer on wheat and maize productivity in
sandy soils under drought stress. Environment, Biodiversity and Soil
Security 4: 85-102.
Abouhussein, S. 2012. Climate change and its
impact on the productivity and quality of vegetable crops (review article). Journal
of Applied Sciences Research 8(8): 4359-4383.
Ahmad,
M., Waraich, E.A., Skalicky,
M., Hussain, S., Zulfiqar, U., Anjum, M.Z., Habib ur Rahman, M., Brestic, M., Ratnasekera, D., Lamilla-Tamayo,
L., Al-Ashkar, I. & El Sabagh,
A. 2021. Adaptation strategies to improve the resistance of oilseed crops to
heat stress under a changing climate: An overview. Frontiers in Plant
Science 12: 767150.
Ahmar, S., Gill, R.A.,
Jung, K.H., Faheem, A., Qasim, M.U., Mubeen, M. & Zhou, W. 2020a. Conventional and molecular
techniques from simple breeding to speed breeding in crop plants: Recent
advances and future outlook. International Journal of Molecular
Sciences 21(7): 2590.
Ahmar, S., Saeed, S.,
Khan, M.H.U., Ullah Khan, S., Mora-Poblete, F.,
Kamran, M. & Jung, K.H. 2020b. A revolution toward gene-editing technology and its application to crop
improvement. International Journal of Molecular Sciences 21(16):
5665.
Alayafi,
A.A.M. 2020. Exogenous ascorbic acid induces systemic heat stress tolerance in
tomato seedlings: Transcriptional regulation mechanism. Environmental
Science and Pollution Research 27(16): 19186-19199.
Ali, S., Rizwan, M., Arif, M.S., Ahmad, R., Hasanuzzaman,
M., Ali, B. & Hussain, A. 2020. Approaches in enhancing thermotolerance in plants: An updated review. Journal of Plant Growth Regulation 39(1):
456-480.
Ali, M., Ayyub, C.M., Silverman, E., Rehman,
M.A., Iqbal, S., Hussain, Z. & Bazmi, M.S.A.
2021. Evaluation of physiological traits and flowering
in Cucumis sativus L. by foliar application of chitosan at three sowing
dates grown under hot environment. Journal of Pure and Applied
Agriculture 6(3): 62-75.
Ali, M., Muhammad, I., Alam, M., Khattak, A.M., Akhtar, K., Ullah,
H. & Gong, Z.H. 2020. The CaChiVI2 gene of Capsicum annuum L.
confers resistance against heat stress and infection of Phytophthora capsici. Frontiers in Plant
Science 11: 219.
Aleem, S., Sharif, I., Tahir, M., Najeebullah,
M., Nawaz, A., Khan, M.I., Batool, A. & Arshad,
W. 2021. Impact of heat stress on cauliflower (Brassica oleracea var. Botrytis): A physiological assessment. Pakistan Journal of
Agricultural Research 34(3): 479-486.
Al-Said,
F., Hadley, P., Pearson, S., Khan, M.M. & Iqbal, Q. 2018. Effect of high
temperature and exposure duration on stem elongation of iceberg lettuce. Pakistan Journal of Agricultural Sciences 55(1): 95-101.
Annegowda, D.C., Prasannakumar, M.K., Mahesh, H.B., Siddabasappa, C.B., Devanna, P., Banakar, S.N. &
Prasad, S.R. 2021. Rice blast disease in India: Present status and future
challenges in rice. In Integrative Advance in Rice Research, edited
by Huang, M. IntechOpen Publishing. pp. 1-43.
Arif, M., Jan, T., Riaz, M., Fahad, S., Adnan, M., Ali, K. & Rasul, F. 2020. Biochar: A remedy
for climate change. In Environment, Climate, Plant and Vegetation
Growth, edited by Fahad,
S., Hasanuzzaman,
M., Alam, M., Ullah, H.,
Saeed, M., Khan, I.A. & Adnan, M. Switzerland: Springer Nature. pp. 151-171.
Ashkani, S., Rafii,
M.Y., Shabanimofrad, M., Miah, G., Sahebi, M., Azizi, P., Tanweer, F.A., Akhtar, M.S. & Nasehi,
A. 2015. Molecular breeding strategy and challenges towards improvement of
blast disease resistance in rice crop. Frontiers in Plant Science 6:
886.
Ayenan, M.A.T., Danquah, A., Hanson, P., Ampomah-Dwamena,
C., Sodedji, F.A.K., Asante, I.K. & Danquah, E.Y. 2019. Accelerating breeding for heat
tolerance in tomato (Solanum lycopersicum L.): An integrated approach. Agronomy 9(11):
720.
Ayyogari, K., Sidhya, P. & Pandit, M.K.
2014. Impact of climate change on vegetable cultivation - A review. International
Journal of Agriculture, Environment and Biotechnology 7(1): 145-155.
Balal, R.M., Shahid, M.A., Javaid, M.M.,
Iqbal, Z., Anjum, M.A., Garcia-Sanchez, F. &
Mattson, N.S. 2016. The role of selenium in amelioration of heat-induced
oxidative damage in cucumber under high-temperature stress. Acta Physiologiae Plantarum 38(6): 1-14.
Begum, N., Qin, C., Ahanger, M.A.,
Raza, S., Khan, M.I., Ashraf, M. & Zhang, L. 2019. Role of arbuscular mycorrhizal fungi in
plant growth regulation: Implications in abiotic stress tolerance. Frontiers
in Plant Science 10: 1068.
Bibi, A., Ibrar, M., Shalmani, A. & Rehan, T.
2021. A review on
recent advances in chitosan
applications. Pure and Applied Biology 10(4): 1217-1229.
Bisbis, M.B., Gruda, N. & Blanke, M. 2018. Potential impacts of climate change on
vegetable production and product quality - A review. Journal of Cleaner
Production 170: 1602-1620.
Carter, S., Shackley, S., Sohi, S., Suy, T.B. & Haefele, S. 2013. The impact of biochar application on soil properties and plant growth of pot grown
lettuce (Lactuca sativa)
and cabbage (Brassica chinensis). Agronomy 3(2):
404-418.
Chen, S., Saradadevi, R., Vidotti, M.S., Fritsche-Neto, R., Crossa, J., Siddique, K.H. & Cowling, W.A. 2021.
Female reproductive organs of Brassica napus are more sensitive than male to transient heat stress. Euphytica 217(6): 1-12.
Chitwood, J., Shi, A., Evans, M., Rom, C., Gbur, E.E., Motes, D., Chen, P. & Hensley, D. 2016.
Effect of temperature on seed germination in spinach (Spinacia oleracea). HortScience 51: 1475-1478.
Dasgan, H.Y., Dere, S., Akhoundnejad, Y. & Arpaci, B.B. 2021. Effects of high-temperature stress
during plant cultivation on tomato (Solanum lycopersicum L.) fruit nutrient content. Journal
of Food Quality 2021: 7994417.
Driedonks, N., Rieu, I. & Vriezen, W.H.
2016. Breeding for plant heat tolerance at vegetative and reproductive
stages. Plant Reproduction 29(1):
67-79.
Dong, J., Gruda, N., Li, X., Tang,
Y., Zhang, P. & Duan, Z. 2020. Sustainable
vegetable production under changing climate: The impact of elevated CO2 on yield of vegetables and the interactions with environments-A review. Journal
of Cleaner Production 253: 119920.
Dong, S., Zhang, S., Wei, S., Liu, Y., Li, C., Bo, K. &
Zhang, S. 2020. Identification of quantitative trait loci controlling
high-temperature tolerance in cucumber (Cucumis sativus L.) seedlings. Plants 9(9):
1155.
Ekka, P., Daniel, S., Larkin, A., Kishore, P. & Singh, H.
2022. Effect of hydrogel and inorganic manure on the growth and yield of lettuce (Lactuca sativa L.) under citrus-based agroforestry system. International Journal of
Farm Sciences 12(1): 37-40.
Faiz, H.,
Ayyub, C.M., Khan, R.W. & Ahmad, R. 2020. Morphological, physiological and
biochemical responses of eggplant (Solanum melongena L.) seedling to heat stress. Pakistan
Journal of Agricultural Sciences 57(2): 1-10.
Fahad, S.,
Hussain, S., Saud, S., Hassan, S., Tanveer, M., Ihsan, M.Z. & Huang, J. 2016. A combined application of biochar and phosphorus alleviates heat-induced
adversities on physiological, agronomical and quality attributes of rice. Plant
Physiology and Biochemistry 103: 191-198.
Formisano, L.; Ciriello, M.;
Formisano, L., Ciriello, M., Cirillo, V., Pannico, A., El-Nakhel, C., Cristofano, F., Duri, L.G., Giordano, M., Rouphael,
Y. & De Pascale, S. 2021. Divergent leaf morpho-physiological
and anatomical adaptations of four lettuce cultivars in response to different
greenhouse irradiance levels in early summer season. Plants 10: 1179. https://doi.org/10.3390/plants10061179
Fu, J., Momčilović, I. & Prasad, P.V. 2012. Roles of
protein synthesis elongation factor EF-Tu in heat
tolerance in plants. Journal of Botany 2012: 835836.
Giordano, M.,
Petropoulos, S.A. & Rouphael, Y. 2021. Response
and defence mechanisms of vegetable crops against drought, heat and salinity
stress. Agriculture 11(5): 463.
Giri, A., Heckathorn, S., Mishra, S. & Krause, C. 2017. Heat
stress decreases levels of nutrient-uptake and assimilation proteins in tomato
roots. Plants 6(1): 6.
Guo, R.,
Wang, X., Han, X., Chen, X. & Wang-Pruski, G.
2020. Physiological and transcriptomic responses of water spinach (Ipomoea aquatica) to prolonged heat stress. BMC
Genomics 21(1): 1-15.
Hassan, M.U., Chattha, M.U., Khan,
I., Chattha, M.B., Barbanti,
L., Aamer, M. & Aslam, T. 2020. Heat stress in
cultivated plants: Nature, impact, mechanisms, and mitigation strategies - A
review. Plant Biosystems155(2): 211-234.
Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R. & Fujita, M. 2013. Physiological,
biochemical, and molecular mechanisms of heat stress tolerance in plants. International
Journal of Molecular Sciences 14(5): 9643-9684.
Hall, A.E. 1992. Breeding for Heat Tolerance. New York: John Wiley
& Sons. pp. 129-168.
Hawrylak-Nowak, B., Dresler, S., Rubinowska, K., Matraszek-Gawron, R., Woch, W., Hasanuzzaman, M. 2018. Selenium biofortification enhances the growth and alters the physiological response of lamb's lettuce grown under high-temperature stress. Plant Physiology and Biochemistry 127: 446-456.
Hazra, P., Anasary, S.H., Sikder, D. &
Peter, K.V. 2007. Breeding tomato (Lycopersicon esculentum Mill) resistant to high temperature
stress. International Journal of Plant Breeding 1(1): 31-40.
Hemmati, H.,
Gupta, D. & Basu, C. 2015. Molecular physiology of heat stress responses in plants. In Elucidation of Abiotic Stress Signaling in Plants, edited by Pandey, G. New York:
Springer. pp. 109-142.
Hickey, L.T., Germán, S.E., Pereyra, S.A., Diaz, J.E., Ziems,
L.A., Fowler, R.A. & Dieters, M.J. 2017. Speed breeding for multiple disease resistance in barley. Euphytica 213(3):
64.
Hidangmayum, A., Dwivedi, P., Katiyar, D. & Hemantaranjan, A. 2019. Application of chitosan on plant
responses with special reference to abiotic stress. Physiology and
Molecular Biology of Plants 25(2): 313-326.
Hussain,
T., Ayyub, C.M., Amjad, M. & Hussain, M. 2021.
Analysis of morpho-physiological changes occurring in
chilli genotypes under high temperature. Pakistan Journal of Agricultural
Science 58(1): 43-50.
Jha, U.C., Bohra, A.
& Singh, N.P. 2014. Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breeding 133(6):
679-701.
Jumrani, K.,
Bhatia, V.S., Kataria, S., Alamri,
S.A., Siddiqui, M.H. & Rastogi, A. 2022.
Inoculation with arbuscular mycorrhizal fungi alleviates the adverse effects of high temperatures in soybean. Plants 11(17):
2210.
Kim, Y.C., Kang, Y., Yang, E.Y., Cho, M.C., Schafleitner, R., Lee, J.H. & Jang, S. 2021.
Applications and major achievements of genome editing in vegetable crops: A
review. Frontiers in Plant Science 2021: 688980.
Kompas, T., Pham, V.H.
& Che, T.N. 2018. The effects of climate change
on GDP by country and the global economic gains from complying with the Paris
climate accord. Earth's Future 6(8): 1153-1173.
Krishna, R., Karkute, S.G., Ansari,
W.A., Jaiswal, D.K., Verma,
J.P. & Singh, M. 2019. Transgenic tomatoes for abiotic stress tolerance:
Status and way ahead. Biotech 9(4): 1-14.
Kumar, P. & Srivastava, D.K. 2016. Biotechnological
advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica),
an important vegetable crop. Biotechnology Letters 38(7):
1049-1063.
Kuyyogsuy, A., Deenamo, N., Khompatara, K., Ekchaweng, K. & Churngchow,
N. 2018. Chitosan enhances resistance in rubber tree (Hevea brasiliensis), through the induction of abscisic acid (ABA). Physiological and Molecular
Plant Pathology 102: 67-78.
Lohani, N.,
Jain, D., Singh, M.B. & Bhalla, P.L. 2020.
Engineering multiple abiotic stress tolerance in canola, Brassica napus. Frontiers in Plant
Science 11: 3.
Malhi, G.S., Kaur, M.,
Kaushik, P., Alyemeni, M.N., Alsahli,
A.A. & Ahmad, P. 2021. Arbuscular mycorrhiza in
combating abiotic stresses in vegetables: An eco-friendly approach. Saudi
Journal of Biological Sciences 28(2): 1465.
Malhotra, S.K. 2017. Horticultural crops and climate change: A review. Indian Journal of Agricultural Sciences 87(1): 12-22.2017.
Mattos, L.M., Moretti,
C.L., Jan, S., Sargent, S.A., Lima, C.E.P. & Fontenelle,
M.R. 2014. Climate changes and potential impacts on quality of fruit and
vegetable crops. In Emerging Technologies and Management of Crop Stress
Tolerance, edited by Ahmad,
P. Massachusetts: Academic Press. pp. 467-486.
Macias-González,
M., Truco, M.J., Bertier,
L.D., Jenni, S., Simko, I., Hayes, R.J. & Michelmore, R.W. 2019. Genetic architecture of tipburn resistance in lettuce. Theoretical and
Applied Genetics 132(8): 2209-2222.
Min, J., Lu, K., Sun, H., Xia, L., Zhang, H. & Shi, W.
2016. Global warming potential in an intensive vegetable cropping system as
affected by crop rotation and nitrogen rate. CLEAN–Soil, Air, Water 44(7): 766-774.
Mnyika, A.W.
2020. Effect of irrigation regime, super-absorbent polymer and rabbit manure
on growth and yield of eggplant (Solanum melongena L.) in Kilifi County. Master dissertation, Pwani University. pp.
1-88 (Unpublished).
Mohamed, M.H.M. & Zewail,
R.M.Y. 2016. Alleviation of high temperature in cabbage plants grown in summer
season using some nutrients, antioxidants and amino acids as foliar application
with cold water. Journal of Plant Production 7(4): 433-441.
Momčilović, I., Pantelić, D., Zdravković-Korać,
S., Oljača, J., Rudić,
J. & Fu, J. 2016. Heat-induced accumulation of protein synthesis elongation
factor 1A implies an important role in heat tolerance in potato. Planta 244(3):
671-679.
Oladosu, Y., Rafii, M.Y., Samuel, C., Fatai,
A., Magaji, U., Kareem, I. & Kolapo,
K. 2019. Drought resistance in rice
from conventional to molecular
breeding: A review. International Journal of Molecular Sciences 20(14):
3519.
Oladosu, Y., Rafii, M.Y., Abdullah, N., Hussin,
G., Ramli, A., Rahim, H.A. & Usman, M. 2016.
Principle and application of plant mutagenesis in crop improvement: A
review. Biotechnology & Biotechnological Equipment 30(1):
1-16.
Ostrand, M.S., DeSutter, T.M., Daigh,
A.L., Limb, R.F. & Steele, D.D. 2020. Superabsorbent polymer
characteristics, properties, and applications. Agrosystems, Geosciences
& Environment 3(1): e20074.
Pham, D., Hoshikawa, K., Fujita,
S., Fukumoto, S., Hirai, T., Shinozaki, Y. & Ezura,
H. 2020. A tomato heat-tolerant mutant shows improved pollen fertility and
fruit-setting under long-term ambient high temperature. Environmental
and Experimental Botany 178: 104150.
Rana, M.M., Takamatsu, T., Baslam,
M., Kaneko, K., Itoh, K., Harada, N. & Mitsui, T. 2019. Salt tolerance
improvement in rice through efficient SNP marker-assisted selection coupled
with speed-breeding. International Journal of Molecular Sciences 20(10):
2585.
Raza, A., Razzaq, A., Mehmood, S.S., Hussain, M.A., Wei, S., He, H. & Hasanuzzaman, M. 2021. Omics: The way forward to enhance
abiotic stress tolerance in Brassica napus L. GM Crops and Food 12(1): 251-281.
Salava, H., Thula, S., Mohan, V., Kumar, R. & Maghuly,
F. 2021. Application of genome editing in tomato breeding: Mechanisms,
advances, and prospects. International Journal of Molecular Sciences 22(2):
682.
Samantara, K.,
Bohra, A., Mohapatra, S.R., Prihatini,
R., Asibe, F., Singh, L. & Varshney,
R.K. 2022. Breeding more crops in less time: A perspective on speed
breeding. Biology 11(2): 275.
Seman, Z.A., Razak, S.A., Ghaffar, M.A., Misman, S.N., Redzuan, R.A., Sew, Y.S. & Rashid, M.R. 2019.
Development of in del marker for
rice blast resistance gene Pi9. Indian Journal of Agricultural
Research 53(3): 277-283.
Sharma,
S. & Manjeet 2020.
Heat stress effects in fruit crops: A review. Agricultural Reviews 41(1):
73-78.
Siddiqui, M., Alamri, S.A., Mutahhar, Y.Y., Al-Khaishany, M.A.,
Al-Qutami, H.M. & Nasir Khan, M.A. 2017. Nitric
oxide and calcium induced physiobiochemical changes
in tomato (Solanum lycopersicum)
plant under heat stress. Fresenius Environmental Bulletin 26(2a):
1663-1672.
Singh,
A.K., Singh, M.K., Singh, V., Singh, R., Raghuvanshi,
T. & Singh, C. 2017. Debilitation in tomato (Solanum lycopersicum L.) as result of heat stress. Journal
of Pharmacognosy and Phytochemistry 6(6):
1917-1922.
Shalaby, T.A., Abd-Alkarim, E., El-Aidy,
F., Hamed, E.S., Sharaf-Eldin,
M., Taha, N. & Dos Reis, A.R. 2021.
Nano-selenium, silicon and H2O2 boost growth and
productivity of cucumber under combined salinity and heat stress. Ecotoxicology
and Environmental Safety 212: 111962.
Thuy, T.L.
& Kenji, M. 2015. Effect of high temperature on fruit productivity and
seed-set of sweet pepper (Capsicum annuum L.)
in the field condition. Journal of Agricultural Science and Technology 5(12):
515-520.
Upreti, K.K.
& Sharma, M. 2016. Role of plant growth regulators in abiotic stress tolerance. In Abiotic
Stress Physiology of Horticultural
Crops. Springer, New Delhi, pp. 19-46.
Usman, M.G., Rafii, M.Y., Martini, M.Y., Yusuff,
O.A., Ismail, M.R. & Miah, G. 2018. Introgression of heat shock protein (Hsp70 and sHsp) genes into the Malaysian elite chilli variety Kulai (Capsicum annuum L.) through the application of marker-assisted backcrossing (MAB). Cell Stress and Chaperones 23(2): 223-234.
Wahid, A., Gelani, S., Ashraf, M. & Foolad,
M.R. 2007. Heat tolerance in plants: An overview. Environmental and
Experimental botany 61(3): 199-223.
Wanga, M.A., Shimelis, H., Mashilo, J.
& Laing, M.D. 2021. Opportunities and challenges of speed breeding: A
review. Plant Breeding 140(2): 185-194.
Watson, A., Ghosh,
S., Williams, M.J., Cuddy, W.S., Simmonds, J., Rey, M.D. & Hickey, L.T.
2018. Speed breeding is a powerful tool to accelerate crop research and
breeding. Nature Plants 4(1): 23-29.
Waqas, M.A.,
Wang, X., Zafar, S.A., Noor, M.A., Hussain, H.A., Azher Nawaz, M. & Farooq, M. 2021. Thermal stresses in maize: Effects and management strategies. Plants 10(2): 293.
Wen, J., Jiang,
F., Weng, Y., Sun, M., Shi, X., Zhou, Y. & Wu, Z.
2019. Identification of heat-tolerance QTLs and high-temperature
stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC
Plant Biology 19(1):
1-17.
Xu, J., Driedonks, N., Rutten, M.J., Vriezen,
W.H., de Boer, G.J. & Rieu, I. 2017. Mapping
quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Molecular
Breeding 37(5): 58.
Xu, C. & Mou, B. 2018. Chitosan as soil amendment affects lettuce
growth, photochemical efficiency, and gas
exchange. HortTechnology 28(4):
476-480.
Ye, C., Ishimaru, T., Lambio, L., Li, L.,
Long, Y., He, Z. & Su, Z. 2022. Marker-assisted pyramiding of QTLs for heat tolerance and escape upgrades heat resilience in rice (Oryza sativa L.). Theoretical and Applied Genetics 135(4):
1345-1354.
Yu, W., Wang, L.,
Zhao, R., Sheng, J., Zhang, S., Li, R. & Shen, L. 2019. Knockout of SlMAPK3
enhances tolerance to heat stress involving ROS homeostasis in tomato
plants. BMC Plant Biology 19(1): 1-13.
Zinn, K.E., Tunc-Ozdemir, M. & Harper, J.F. 2010. Temperature
stress and plant sexual reproduction: Uncovering the weakest links. Journal
of Experimental Botany 61(7): 1959-1968.
Zhao, C., Nawaz,
G., Cao, Q. & Xu, T. 2022. Melatonin is a potential target for improving
horticultural crop resistance to abiotic stress. Scientia Horticulturae 291: 110560.
*Corresponding
author; email: nora_aziz@ukm.edu.my
|